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Chemoreceptive Control of Venti lation 
in Amphibians and Air-Breathinq Fishes 
Warren Burggren* and Tien-Chien Pan 

Abstract 

Ventilation is a critically important process in providing 02 to the respiratory surfaces and 
removing CO

2 
from them. When either environmental gas composition or tissue demands 

change, then adjusting ventilation through rate and amplitude modifications is the mostdirect 
response to ensure respiratory gas exchange. In amphibious vertebrates breathing both air 
and water and usinga suite of respirator structures (which can include skin. external gills, 
internal gills, lungs; gas bladders and intestines). theprocess of ventilatory adjustment can be 
complex indeed. The present review examines the morphology, physiology and evolutionary 
biology of ventilatory responses to altered 02 and CO

2 
levels in amphibians andair-breathing 

fishes. Additionally. the vital role in modulating ventilatory responses of bothcentrally and 
peripherally located chemoreceptors and mecoanoreceptors, as investigated by in vitro and in 

vivomethods. is examined. Finally, this analysis concludes by posing an extensive list of areas 

inlower vertebrate respiratory control deservingfuture investigation. 

Introduction 

Many vertebrates exploit some combination of aquatic and aerial gas exchange to 
provide 02 uptake and CO

2
elimination. In fishes, exploitation of aerial gas exchange 

has evolved independently many times, involving a variery of air breathing organs 
(for general reviews see Johansen, 1970; Randall et al., 1981; Little, 1983; Graham, 
1997; Maina, 2002). Indeed, air-breathing occurs in at least 49 known families of 
fish (Graham, 1997). In the Amphibia, a large proportion of the more than 6000 
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amphibian species dwell in water (e.g. the anuran amphibians and especially fro 

using their lungs for aerial gas exchange and their skin for aquatic gas exchange. From 

developmental perspective, almost all air-breathing fishes and amphibians exhibit e 

embryonic/larval stages that are strictly aquatic and use solely water for gas exchange, 

but subsequently undergo a fascinating and complex developmental transition that 

includes the capacity for air breathing. 

The term "bimodal breather" has been used extensively in describing various 

amphibious vertebrates, but some confusion as to the meaning of this term still persists. 

"Mode" is typically defined as ':.a way of doing something.. :~ hence "biornodal" refers 

to two ways of doing something. It follows, then, that "bimodal gas exchange" refers to 

the two ways in which gas exchange is achieved, not the two respiratory media (water, 

air) that are used (Figure 1). Thus, here we use the term "biornodal" to mean that two 

different respiratory structures are used.' This may at first seem like a trivial semantic 

diversion. Consider, however, that many amphibious vertebrates, at some stage in their 

development, are actually trimodal breathers that us various combinations of skin plus 
gills plus lungs to breath both water (skin and/or gills) and air (skin and/or lungs). 

In many respects, trimodal breathing represents a much more complex respiratory 

Figure 1: Interrelationships between modes of breathing with various respiratory organs 
and the two respiratory media-warer and air. Many amphibious vertebrates use 
combinations of respiratory modes during their developmental life cycle, as wellas 
concurrently as adults. The skin is the only respiratory organ that can serveequally 
well when either water- or air-exposed. Note that in some speciesof air- breathing 
fishes the gills do not entirely collapsewhen air exposed, and can still participatein 
some degree of gas exchange. Similarly, some non-pulmonary air-breathing organs 
in fishescan continue to exchangegas at slow rates even when water-filled (e.g, the 
labyrinth organ oflabyrinthodontid fishes). 

1 It couldbe argued that "diffusion" and"convection" areindeedalso "modes" ofgasexchange, buthere 
we shallconfine the useof modeto structure rather than process. 
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situation compared with the far simpler respiratory circumstances of animals that 

use almost exclusively either gills or lungs. Indeed, the non-linear developmental 

transition of many amphibians from breathing only with skin (early larvae) ~ skin 

+ gill breathing ~ skin + gill + lung breathing ~ skin + lung breathing (adults) has 

been used a physiological model for complexity change and its analysis (Burggren and 

Monticino, 2005; Burggren, 2006). 
Tremendous variety is to be found in the combinations ofvarious modes ofbreathing 

in amphibious vertebrates. A review of this material is beyond the scope of this chapter. 

However, evident from Figure 1 is that in any vertebrate using multiple respiratory 

modes and multiple respiratory media, the control of ventilation process is potentially 

quite complicated. In this chapter we will discuss the chemoreceptive control of air 

breathing in amphibious vertebrates using multiple modes of gas exchange. To begin 

this process, let us first briefly consider from a ventilatory control point of view both 

the physico-chemical characteristics of the respiratory media as well as the nature 

respiratory modes (structures). 

The Respiratory Media 

Water and air differ enormously in attributes important to the process ofgas exchange: 

density,viscosity and oxygen capacitance. These three factors interact to make breathing 

water a very different process from breathing air. Because water is heavier, more viscous 

and has a much lower 02 capacity than air, animals actively breathing water-that is, 

using muscle power to generate a flow of water over their respiratory surfaces-will 

have to pump a 30-40 times greater volume of water than an air breather would have 

to pump of air. Thus, the cost of breathing water in aquatic fishes, while apparently 

quite variable, is certainly much more expensive than in vertebrates that breathe air 

(seeRandall, 1970; Steffenson and Lornholt, 1983; Maina, 2002). Consequently, there 

is an additional energetic burden on aquatic vertebrates to ensure that ventilation 

is carefully monitored and regulated. Also, because aquatic vertebrates like fishes 

necessarily ventilate their gills with a high volume of water-and because CO2 has 

a much greater capacitance coefficient for CO
2 

than 02' metabolically produced CO2 
is quickly washed out of the blood. Typically, fishes have a venous blood PC02of less 

than 1 kPa, compared with much higher values typically in the range of 5-8 kPa for 

terrestrial, air-breathing animals. 

For equivalent molar quantities of CO2entering a given volume of water or air, the 

very high solubility of CO2 in water means that the increase in measurable PC02 in 

airwill be much higher than the PC02increase in water. In other words, elimination 

of a large amount of CO2 into water will produce only very small increases in PC02 
in the exhalant water stream. The addition of CO2into water will result in a variable 

degree of fall in the pH of exhalent water, because the actual change in water pH 

for a given molar quantity of CO2 eliminated from the blood is dependent upon the 
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exhalent water's buffer capacity. While some aquatic species are tolerant of only a very 
narrow suite of water characteristics, others can range more freely and experience a 

significant range of water quality, including buffer capacity. Thus, monitoring of either 
PC02or pH in exhalent water for the purposes of regulation of aquatic ventilation will 
be unreliable for an aquatic animaL 

As a consequence of these physico-chemical differences in air and water, aquatic 
vertebrates have evolved ventilatory control systems that predominantly affect the 
uptake of O, (Smatresk, 1990; Taylor et al., 1999; Florindo et al., 2004; Vulesevic and 

Perry, 2006). Ventilatory changes for CO2elimination are rarely necessary, though fishes 
do have some ventilatory responses to aquatic hypercarbia (e.g. Perry and McKendry, 
2001). Body fluid pH in strictly water-breathing vertebrates is maintained in large part 
by the controlled elimination of H+ and HC0 ' ions, since the high solubility of CO 23 

in water makes untenable retention of CO2in the blood to be"blown off" in a regulated 
fashion. In contrast, in terrestrial air-breathing animals air is relatively inexpensive 

to metabolically pump through lungs or lung-like organs, and 02 is in abundance. 
Minute-to-minute ventilatory control thus tends to center around elimination of 
CO2to maintain of appropriate body fluid pH levels, though internal or, more rarely, 
environmental hypoxia can nonetheless profoundly stimulate ventilation. 

Gas exchange and ventilatory control complexity reaches a zenith in amphibious, 
bimodal breathers that have to face concurrently both the advantages and disadvantages 

of air and water as a respiratory medium. We will return to this topic after considering 
the respiratory organs, themselves. 

Modes of Gas Exchange:
 
The Respiratory Structures ofVertebrates
 

Collectively, amphibians and air-breathing fishes show examples using all four major 
categories of respiratory structure of vertebrates: skin, gills, non-pulmonary air­
breathing organs, and lungs. Many species, either as larvae or adults, show combinations 
of exchangers as either bimodal or trimodal breathers. 

Skin 
All animals have some capacity for gas exchange via their generalized body surface 
(skin). Even in heavily scaled fishes or furry mammals there is measurable 02 uptake 
and CO2elimination via the skin. In some lightly scaled or scale-less aquatic fishes and 
in primarily aquatic amphibians, cutaneous gas exchange can account for up to 40% of 
02 uptake and, in amphibians, even larger proportions of CO2elimination (Feder and 
Burggren, 1985). The rest of the gas exchange in these bimodal or tri-rnodal breathers 
occurs by gills, ABOs or lungs. In terrestrial vertebrates with thin, relatively moist skin 

(e.g. toads), there is a reduced role of the skin in 02 uptake, which occurs primarily via 
pulmonary routes, but the skin retains importance in CO2elimination. 
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There is an historical, dominant view in the literature that cutaneous gas exchange 

'Just happens"-that is, it cannot be regulated per se and instead, gas exchange across 

the generalized body surface merely reflects the partial pressure gradients for gases 

between blood and surrounding air or water. While both the relative role of the skin 

in gas exchange declines as metabolic rate increases and the transcutaneous partial 
pressure gradients are certainly of pre-eminent importance (e.g, Pinder et al., 1991), 

recent experiments on terrestrial toads have shown that, overall, cutaneous blood flow, 

as well as regionalized capillary recruitment and derecruirrnent, can actively regulate 

cutaneous gas exchange (Burggren and Vitalis, 2004) to an extent not previously 

appreciated. Skin of aquatic vertebrates can also be actively ventilated via behavioral 

mechanisms. One of the biggest obstacles to effective cutaneous gas exchange is 

the build-up of a boundary layer of stagnant water adjacent to the skin, essentially 

increasing the diffusion distance for respiratory gases. By positioning the body in a 

current of water or by actively swimming or creating other body movements, fishes 

and aquatic amphibians can disrupt these boundary layers and increase the efficiency 

of cutaneous gas exchange. 

Whether there is localized sensory monitoring ofchanges in tissue °2 and CO2 that 
reflexly alter either cutaneous perfusion or activities that''venrilate" the skin is currently 

unknown. 

Gills 
The structure and respiratory function of gills has been extensively documented in 

fishes (for recent reviews and entry into the extensive literature see Maina, 2002; 

Olson, 2002; Wilson and Laurent, 2002; Evans et al., 2005). Briefly,in all but the most 

primitive fishes, the branchial arches (typically 4 to 6 pairs depending on genus) are 

enclosed in paired internal branchial chambers. Buccal pumping drives large volumes' 

of water across the gills in a direction counter to that of the blood flow within the 

individual gill filaments. Gill ventilation is carefully tuned to oxygen demands via 
sensoryfeedback involving receptors located within the branchial chambers, on the gill 

surfaces, or internally in excurrent (arterialized) blood (see Chapter 1, this volume). 

Thegills of larval and neotenous amphibians have been much less examined compared 

to fishgills (Malvin, 1989; Pinder and Burggren, 1986; Maina, 2002). 

External gills contribute to gas exchange in early developmental stages in both fishes 

and amphibians, and persisting in adults in a few neotonous amphibian species. Since 
these gills are not enclosed in a ventilated, internal chamber, they are faced with the 

issues of boundary layer build-up as skin. However, once again behavioral activities 

enhancing gas exchange involve orientation of the body in currents or, in the case of 
some amphibians with external gills, doing "pushups" to wave the gills and break up 

boundary layers in hypoxic water. Generally, gills are solely instruments of aquatic gas 

exchange, collapsing to a fraction of their original surface area when removed from 

the buoying effect of water and exposed to air. However, the gills of a few amphibious 2 
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fishes that venture on to land (e.g. Periopthalmus, Boleophthalmus) have mechanical 

spacers that hold apart the individual filaments and allow some continuing aerial gas 
exchange (see Graham, 1997). 

Non-pulmonary Air-Breathing Organs 
Non-pulmonary air-breathing organs (ABOs) are found in the air-breathing fishes 

excluding the lungfishes, which have true lungs (see below). ABOs are found in 
many shapes and forms in air-breathing fishes (Randall et al., 1981; Graham, 1997). 

They have evolved as both de novo structures (e.g. labyrinth organs of the gourami, 
Trichogaster trichopterus and the Siamese fighting fish, Betta splendens), and through 

partial modification of organs used for other purposes (e.g. the hindgut of the African 

weather leach, Misgurnus anguillacaudatus or the swim bladder of the arapaima, 

Airpaima gigas). Lung-like ABOs, which can be quite elaborate with an alveolar-like 

structure, always retain a residual gas volume are never exposed to water. However, 

labyrinth organs in epibranchial chambers alternate between being water and air 

filled, and the gut breathers must accommodate both air and regular gastrointestinal 

contents. 

ABOs tend to be regularly ventilated, with the ventilation rate increasing with 

higher metabolic demand, increasing temperature (which heightens the metabolic 

rate), and with decreasing environmental 02 levels. The reflex mechanisms by which 

air ventilation in ABOs of air-breathing fishes are regulated are not nearly as well 
categorized as for amphibians or aquatic fishes, as will be discussed below. 

Lungs 
True lungs are found only in the lungfishes (Lepidosiren, Neoceratodus, Protopterus) 
and in tetrapod vertebrates including, of course, the amphibians. These structures are 

ventrally derived outgrowths of the esophagus, a definition that differentiates them 

from swim bladders that might otherwise occupy the same region of the body cavity 

and have a similar structure to primitive lungs. Lungs are also perfused by arteries 

derived from the branchial arch VI, comprising a pulmocutaneous artery in amphibians 

and a pulmonary artery in lungfishes. Having made this embryological!anatomical 

distinction, the mechanisms of ventilation of the lungs of lower vertebrates are quite 

similar to those of ABOs derived from swim bladders. Rather than a diaphragmatic 

mechanism as in mammals, for example, the lungs are ventilated by positive pressure 

produced by buccal gas compression in both lungfishes (McMahon, 1969; DeLaney 

and Fishman, 1977) and amphibians (Shoemaker et al., 1992; Jorgensen, 2000; 

Vasilakos et al., 2006), though some dispute still exists over the precise mechanics and 

patterns of gas flow (see Fernandes et al., 2005). The interior structure of the lungs of 

amphibians and lungfishes is quite variable, but generally they are more secular than 

the more highly alveolarized lungs of reptiles and mammals. 
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Having reviewed the respiratory structures of bimodally breathing air-breathing 

fishes and amphibians, now let us turn to how the specific role of chemoreceptors in 

the regulation of their ventilation. 

Chemoreceptors and Ventilatory Control 
in Amphibians 

Sensory Systems for Ventilation Regulation 

The role of the respiratory system of amphibians is to maintain appropriate respiratory 

gas composition within the circulating body fluids. To achieve this task, information 

on respiratory gases, acid-base status, and ventilatory performance transduced by 

various O - and CO chemoreceptors and mechanoreceptors must reach the 
2 2-sensitive 

brain, especially the medulla. It is in this central nervous system structure where the 

respiratory rhythm is both formed and modulated, generating appropriate respiratory 

behaviors to meet the tissues' gas exchange requirements. Sensing both the external and 

internal environment is the key to effective regulation ofventilation. Thus amphibians, 

not surprisingly, show a variety of sensory receptors that monitor both peripheral and 

central changes in respiratory gases and pH. The general subject of chemoreceptors in 

amphibians has previously been reviewed in depth (Smatresk, 1990; West and Van 

Vliet, 1992; Kusakabe, 2002; Reid, 2006; Gargaglioni and Milsorn, 2007), and our 

intent here is to provide a general overview. 

Respiratory Tract Chemoreceptors 
Pulmonary Stretch Receptors. Pulmonary stretch receptors deliver dynamic 
information on the extent of lung deflation and inflation to the brain stem via the vagus 

nerve.Generally, amphibian pulmonary stretch receptors are stimulated by a dynamic 

increase in lung volume or pulmonary wall tension, which in turn increases expiration 

and inhibits inspiration (West and Van Vliet, 1992; Wang et al., 1999; Reid et al., 
2000; Sanders and Milsorn, 2001; Reid, 2006; Gargaglioni and Milsom, 2007). These 

receptors are divided into three groups. The first group responds to the degree of lung 

inflation, and can be viewed as a pulmonary volume receptor. The second group of 

phasic pulmonary stretch receptors is stimulated by the rate of inflation, increasing 

their firing frequency when the rate of stretch increases. Individual receptors in the last, 

distinct, group actually respond to both rate and extent of stretch (Milsom and Jones, 
1977; Kinkead and Milsom, 1996; Reid, 2006). Reid and West (2004) investigated 

the role of phasic pulmonary stretch receptor (rate-sensitive) in ventilation in the 

canetoad, Btifo marinus, using tidally ventilation instead of the more commonly used 

unidirectional ventilation method. Efferent neural recording of trigeminal nerve 

activity showed that stimulation of the phasic pulmonary stretch receptor increased 

overall breathing frequency. 
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While pulmonary stretch receptors in amphibians are primarily responsive to their 

distortion when pulmonary volume changes, these receptors also respond to increasing 

intrapulmonary CO2levels by decreasing their firing rate (Milsom andJones, 1977; Reid 

et al., 2000; Reid and West, 2004; Reid, 2006; Gargaglioni and Milsorn, 2007). The 

interaction between these two kinds of stimuli is responsible for the overall respiratory 

input from the lungs to the brainstem in the bullfrog (Sanders and Milsom, 2001; 
Reid, 2006). Indeed, the CO2-sensitive stretch receptor in amphibians may represent 

the archetype for specialized CO2receptors found in higher vertebrates (Milsom and 

Jones, 1977; Milsom, present volume). 

Olfactory CO2Chemoreceptors. Olfactory receptors of amphibians are also CO2 
sensitive, and they respond to elevated CO2levels by sending inhibitory afferent signals 

that ultimately inhibit breathing. which is likely to be a defensive mechanism (Getchell 

and Shepherd, 1978; Sakakibara, 1978; Coates and Ballam, 1990). The information 

is conveyed via the olfactory nerve, since transection of that nerve eliminates the 

CO2 response (Coates, 2001). The population of CO2-sensitive olfactory receptors is 

relatively rare. In the salamander, only 1 to 2% of olfactory receptors responded to 5% 
CO2while the remainder were stimulated by odorants (Getchell and Shepherd, 1978). 
The response of these receptors showed dose-dependent increases for CO2levels from 

05 to 10% in the bullfrog (Coates and Ballam, 1990). Carbonic anhydrase (CA), a 

family of enzyme catalyzing the hydration of CO2'was found to participate in the CO2 
sensing mechanism in amphibian olfactory epithelium. Coates et al. (1998) reported 

that CA immunoactivity was localized mainly in the dorsal and ventral regions, where 

23 out of 1222 sites examined responding to 5%CO2,Inhibition of the enzyme (CA) 

by acetazolamide attenuated the response by 65%.These findings support the evidence 

of the rare presence of CO2-sensitive olfactory receptors found in salamanders and 

indicate the role of CA in CO2detection in olfactory epithelium (Coates et al. 1998). 
Other Receptors in the Respiratory Tract. In addition to pulmonary stretch 

receptors and olfactory CO2 receptors, narial mechanoreceptors can be identified 

that are sensitive to water. They prevent water from entering the respiratory tract by 

inhibiting ventilation upon submergence. The feedback from this type of receptor also 

contributes to the overall output of breathing frequency (West and Van Vliet, 1992). 
Taste cells are also sensitive to water; however, no evidence has shown its relationship 

to the ventilation of animals. A population of water-sensitive receptors is also located 

in the glottis and pharynx, and inhibits lung ventilation during swallowing and water 

entry (West and Van Vliet, 1992). 

Arterial Chemoreceptors 
Hypoxic stimulation of lung ventilation in adult anuran amphibians is mediated 

primarily by peripheral 02-sensitive receptors that monitor arterial blood. At least 

two locations have been identified for these chernoreceptors. The first is the carotid 

labyrinth, which is a highly vascular plexus located in the bifurcation of the common 

Ventilation Coni 

carotid artery forming the interru 

Though similar in many respects tc 

not homologous. Both cherno- and 

carotid labyrinth through electropl 
and nerve ablation (Jones and Chu 

Arterial 02-sensitive chemorece 

sodium cyanide and perfusionwit 

in discharge of the receptors wid 

chemoreceptors (Van Vliet and W 
received lesser attention as cornpan 

Receptors within the pulmonar 

ventilation. Injection of cyanide in 

hyperventilation, suggesting the P\1 
(Wang et al., 2004). Denervation 

baroreceptor within the pulmoci 

pulmonary blood flow and incre, 

pulmocutaneous baroreceptors pro 

flow (Smits et al., 1986).Neuroepi 

(Goniakowska-Witalinska, 1997). 

ciliated epithelium of the apical pari 

involving intrapulmonary gascomF 

Afferent and Efferent Innervat 
Receptors providing environment 

throughout the lungs, as well as 

Afferent information bound forthe 

occurs via a variety of nerves carr 

cranial nerves I, V, IX and X (see1 

Modulation of chemoreceptor Pi 
The carotid labyrinth of anurans 

neuropeptides thought to modul 

(Kusakabe et al., 1995; Kusakabe, 

amphibians also receive efferent in 

neural innervation has not beenide 

Central Nervous System and' 
1 Hypoxia. To the best of our la 
an 02 receptor in the centralnerv 

blood P02 and induces physiolog 

some cell groups are thought to p 



ES 

iiansareprimarily responsive to their 

Ie receptors alsorespond to increasing 

ngrate(Milsomandjones, 1977; Reid 

Gargaglioni and Milsorn, 2007). The 

responsible for the overall respiratory 
ullfrog (Sanders and Milsom, 2001; 
eceptor in amphibians may represent 

idin highervertebrates (Milsom and 

'eceptors of amphibians are also CO2 
bysending inhibitory afferent signals 
o bea defensive mechanism (Getchell 

and Ballam, 1990).The information 

section of that nerve eliminates the 

f CO2-sensitive olfactory receptors is 

rolfactory receptors responded to 5% 
rants (Getchelland Shepherd, 1978). 
eendent increases for CO2levels from 
1990). Carbonic anhydrase (CA), a 

2' was foundto participate in the CO2 
relium, Coates et al. (1998) reported 

the dorsal and ventral regions, where 
CO2, Inhibition of the enzyme (CA) 

I. These findings support the evidence 

receptors found in salamanders and 

tory epithelium (Coates et al. 1998). 
~ In addition ro pulmonary stretch 

mechanoreceptors can be identified 

romenteringthe respiratory tract by 
dback from this type of receptor also 

'quency (West and Van Vliet, 1992). 
) evidence has shown its relationship 

Iter-sensitive receptors is also located 

tilation during swallowing and water 

lilt anuran amphibians is mediated 

hat moniror arterial blood. At least 

moreceptors. The first is the carotid 

edin the bifurcation of the common 

Ventilation Control in Amphibians and Air-Breathing Fishes I 159 

carotid artery forming the internal and external carotid arteries (Kusakabe, 2002) 
Though similar in many respects to the mammalian carotid body, these structures are 

not homologous. Both cherno- and baroreceptor functions have been confirmed for the 

carotid labyrinth through electrophysiological recording (Van Vliet and West, 1992) 
and nerve ablation (Jones and Chu, 1988). 

Arterial 02-sensitive chemoreceptors are also located in the aortic arch. Injection of 

sodium cyanide and perfusion with hypoxic or hypoxic-hypercapnic solutions result 

in discharge of the receptors within the aortic arch, indicating the presence of 02 

chemoreceptors (Van Vliet and West, 1992). However, the aortic chemoreceptor has 

received lesser attention as compared to the carotid labyrinth in amphibian. 

Receptors within the pulmonary vasculature also participate in chemoreception for 

ventilation. Injection of cyanide into the pulmonary arterial circulation causes fictive 

hyperventilation, suggesting the presence of pulmonary arterial 02-sensitive receptors 

(Wang et al., 2004). Denervation of the recurrent laryngeal nerves innervating the 
baroreceptor within the pulrnocuraneous arteries caused a threefold increase in 

pulmonary blood flow and increased net transcapillary fluid flux, suggesting that 

pulmocutaneous baroreceprors protect the anuran lung by regulating pulmonary blood 

flow (Smits et al., 1986). Neuroepithelial bodies are also plentiful in amphibian lungs 
(Goniakowska-Witalinska, 1997). These structures, which are located mainly in the 

ciliated epithelium ofthe apical part of the septa, may also playa role in chemoreception 

involving intrapulmonary gas composition. 

Afferent and Efferent Innervation 
Receptors providing environmental cues for ventilatory regulation are distributed 

throughout the lungs, as well as some locations in the central arterial circulation. 

Afferent information bound for the medulla (the site of respiratory rhythm generation) 

occurs via a variety of nerves carrying sensory fibers from these receptors including 

cranial nerves I, V, IX and X (see Table 1). 
Modulation of chemoreceptor performance occurs via efferent ("moror") innervation. 

The carotid labyrinth of anurans is innervated by neurons containing regulatory 

neuropeptides thought to modulate chemoreceptor sensitivity and vascular tone 

(Kusakabe et al., 1995; Kusakabe, 2002). The neuroepithelial bodies in the lungs of 

amphibians also receive efferent innervation, but the physiological significance of this 

neural innervation has not been identified (Goniakowska-Witalinska, 1997). 

Central Nervous System and Ventilatory Chemoreception 
1 Hypoxia. To the best of our knowledge there is no evidence for the existence of 

an 02 receptor in the central nervous system that directly monitors changes in brain 

blood P02 and induces physiological responses, such as hyperventilation. However, 

some cell groups are thought to participate in the pathways responding to hypoxia. 
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Table 1: Afferentinnervation of structures bearingcherno-and mechanoreceptors regularing 
gas exchange in amphibians. 

Anatomical 
Structure(s) 

Cranial Nerve Carrying 
Afferent Fibers 

Reference 

• Nares 
• Olfactory epirhelium 

Cranial nerveI 
Cranial nerveV 

Sakakibara, 1978 
West and Van Vliet, 1992 
Coates, 2001 

• Tongue Cranial nerve IX Inoue, 1978 
West and Van Vliet, 1992 

• Pharynx 
• Glottis 
• Lungs 
• Carotid labyrinth 

Cranial nerveIX 
Cranial verve X 

West and Burggren,1983 
VanVlier and West, 1986 
Wesr and VanVliet, 1992 
Kusakabe, 2002 

The nucleus isthmi (NI), a mesencephalic structure located between midbrain and 

the cerebellum, inhibits the hypoxic ventilatory response in toads, Bufo paracnemis, 
by inhibiting the increase in tidal volume that would normally accompany hypoxia. 

It shows the regulatory role of structures in the CNS in the hypoxic hyperventilatory 

response. Glutamate and nitric oxide (NO) may be two of the possible candidates that 

mediate this inhibitory effect (Gargaglioni and Branco, 2004). 

CO
2

, Despite multiple locations for CO chemorecptors in amphibians, the CO ­
2 2 

sensitive receptors present in the ventral medulla of the central nervous system, which 

arise in late larval development, are considered the dominant sensory site for CO
2 

chemoreception in amphibians as well as other tetrapods (Smatresk and Smits, 1991; 

West and Van Vliet, 1992; Torgerson et al., 1997; Taylor et al., 2003). Stimulation 

of these receptors by high PC0 and low pH caused both an increase in ventilation 
2 

frequency and tidal volume (West and Van Vliet, 1992; Wang er al., 1999). Central 

chemosensitivity to CO
2 

and pH is enhanced by a 9-day-exposure to hypercapnia 

(3.5% CO) as investigated by both in vivo monitoring of breathing frequency and 

in vitro neural recording from brainstern-spinal cord preparations in an adult anuran, 

Bufo marinus (Gheshmy et al., 2006) 

In mammals, several sites within the central nervous system exhibit CO
2 

chemoreception, including the nucleus tractus solitarius, the locus coeruleus, the 

midline medullary raphe, the ventral respiratory group, the fastigal nucleus, and the 

retrotrapezoid nucleus (Feldman et al., 2003). Among these many structures, only the 

locus coeruleus (LC) has been described in amphibians (Noronha-de-Souza, et al., 

2006). In the adult toad, Bufo schneuleri,lesions in the LC diminish the hyperventilatory 

response to hypercarbia, and injection of acidic solution into the LC induces 

hyperventilation (Noronha-de-Souza er al., 2006). Increased immunoreactivity ofc-Ios 

after exposure to 5% CO indicates that the nucleus was activated by hypercarbia. 
2 

In addition to the inhibitory effect on hypoxic hyperventilation, the nucleus isrhrni 

(NI) has a similar inhibitory effect to hypercapnia-induced hyperventilation. The 
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NI differentiates during metamorphosis when the transition of branchial ventilation 

to pulmonary ventilation occurs. Chemical lesion of the NI enhanced hypercarbic 

hyperventilation, demonstrating the inhibitory role of the NI when respiratory 

stimulus is high (Gargaglioni and Branco, 2004). As mentioned earlier, the NI does 

not function as a direct sensor for CO or pH in the CNS, because lesions in the NI
2 

do not affect resting breathing frequency (Gargaglioni and Branco, 2004). 

Brain Respiratory Centers 

The two different ventilatory acts of frogs-the more frequent and rhythmic buccal 

ventilation and the more irregular and stronger lung ventilation-appear to be 

generated by two distinct coupled central pattern generators (CPGs) (Wilson et al., 

2002; Vasilakos et al., 2006). Pulmonary respiratory rhythms in amphibians originate 

from central pattern generators located in the medulla (see McLean et al., 1995; Perry 

et al., 1995; Milsom et al., 1999). Unlike CPGs in mammals and birds, the CPGs 

in adult amphibians do not provide for a constant pulmonary ventilation rhythm, 

but rather generate motor output for frequent but irregularly spaced breaths. Input 

from sites in the dorsal brainstem caudal to the optic chiasma clusters breaths into 

small groupings. Segmental generators in the medulla produce the primary rhythm, 

and are subsequently entrained to create the typical intermittent pattern of pulmonary 

ventilation (Reid et al., 2000). Nitric oxide provides excitatory input to the bullfrog's 

CPGs in the brainstem (Hedrick et al., 1998; Hedrick and Morales, 1999; Harris et 

aI.,2002). 

Buccal respiratory rhythms in adult amphibians are modulated by activity in both 

caudal and rostral levels of the brainstem (Wilson et al., 2002). The buccal oscillator is 

coupled to the pulmonary oscillator via chloride-mediated, opiod-sensitive mechanisms 

(Vasilakos et al., 2006). 

Modulation of the normal ventilation pattern in adult amphibians is based on 

sensory input that occurs via several brain structures. Elevation of the respiratory 

drive results in tegmental and medullary inputs that modify the burst pattern of motor 

output to respiratory muscles (Reid et al., 2000). The nucleus isthmi, a mesencephalic 

structure situated between the cerebellum and the roof of the midbrain, is thought 

to modify the hypoxic and hypercapnic drives (Kinkead et al., 1997; Gargaglioni and 

Branco,2004), a process involving both glutamate, nitric oxide, substance P, etc. (Perry 

et al., 1995; Gargaglioni and Branco, 2004). 

The developmental changes in the location, anatomy, neurochemistry and function 

of amphibian central pattern generators have been investigated because of both the 

usefulness of the model in understanding lower vertebrate ventilation patternsits used 

as a model for considering the evolution of CPGs. This interesting subject is beyond 

the scope of this review, but the reader is referred to recent reviews by (Gdovin et al, 

1999; Straus, 2000; Hedrick et al., 2005) 
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Regulation ofVenti lation by Chemoreceptors 

Ventilatory responses in amphibians represent a complex integration of input from 

pulmonary stretch receptors, olfactory chemoreceptors and intrapulmonary and arterial 

chemoreceptors (Figure 2). Not surprisingly, then, there is no "standard" hypoxic or 

hyepercapnic response. Thus, observation of the nature of a hypoxic or hypercanpic 

drive based on data from the popular brainstem model is perhaps more useful in teasing 

apart the "internal wiring" of the brainstem than it may be in describing the actual 

responses of the whole animals. The ventilatory response of fictive lung breathing 

in brainstem preparations was briefly discussed above, and it is not our intention to 

review these eNS responses (for reviews see Milsom et al.,1999; Reid, 2006). Here 

we will focus on in vivo, whole animal responses. 

Ventilatory Responses to Lung Inflation and Hypoxia 
Intact, conscious amphibians typically exhibit a strong hypoxic drive for both buccal 

and pulmonary ventilation, a finding long recognized for anurans (e.g. Babak, 1911; 

Smyth, 1939; reviewed by West and van Vliet, 1992; see also Branco and Glass, 1995; 

Hou and Huang, 1999). Not only does inspiration ofhypoxic gas stimulate ventilation, 

but hyperoxia actually inhibits ventilation. In the toad Bufo marinus, hyperoxia inhibits 

ventilation even though hypercapnia and respiratory acidosis ensues (Toews and Kirby, 

1985; West et al, 1987), indicating that the hypoxic drive can dominate in controlling 

ventilation in this toad. A typical finding in studies showing hypoxic stimulation of 

ventilation is that not only is pulmonary minute ventilation increased, but the pattern 
of ventilation changes as a consequence of inspiration of hypoxic gas (Pinder and 

Burggren, 1986; West and Van Vliet, 1992; Kinkead and Milsom, 1994; Gardner et 

al., 2000; Gargaglioni and Branco, 2000; Gargaglioni et al., 2002). 

Does inspiration of hypoxic gas stimulate lung ventilation through reduction of 

arterial P02or reduction ofarterial blood oxygen concentrationf Ventilatory responses 

to hypoxia persist independently from changes in blood 02 carrying capacity in Bufo 
paracnemis (Wang et al., 1994; Andersen et al., 2003), indicating that blood-facing 

receptors are monitoring PO2' 

Hypoxic ventilatory responses appear to have a seasonal component in some 

anurans. In Bufo paracnemis, toads that respond vigorosly to hypoxia at 25°C during 

summer show no hypoxic response at 25°C in winter, despite the fact that blood gases 

showed no seasonal effect (Bicego-Nahas et al., 2001), suggesting that seasonal effects 

are affecting some aspect of the chemoreceptors or the integration of the information 

they provide to the CNS. Rana catesbeiana shows enhancement of temperature­

dependent hypoxic ventilatory responses in winter, and reduction in summer, with 

intermediate responses in spring and autumn (Rocha and Branco, 1998) 

The neotenous axolotl, Ambystoma mexicanum, provides an interesting perspective 

in an "adult" amphibian (or at least one that is no longer developing) that ventilates 
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Figure 2:	 Electroneurograms representing fictivebreathing recorded from the laryngealbranch 
of the vagus nerve (XI) and the mandibular branch of the trigeminal nerve (V ) 

m 

in unidirectionally ventilated, decerebrate bullfrogs, Rana catesbeiana. In A, frogs 
were ventilated with air, while in B animals are ventilated with 3% COz in air."Low 
pressure" corresponds to 1 cmHzO, while"high pressure" corresponds to 5 cml-I.O. 
Note that stimulation of stretch receptors by increased ventilation pressure in the 
lungs suppressed Vm burst amplitude such that fictivelung ventilations (taller spikes 
in V recordings) became indistinguishable from fictive buccal oxcillations (shorter 

m 

spickes). COz stimulated absolute fictive lung ventilation, primarily by reducing 
apnea length rather than breathing depth. These experiments show the complex 
nature of the interactions between rnecho- and chemoreceptors in modulating 
the central rhythm generators in anuran amphibians (from Sanders and Milsom, 
2001). 

with both gills and lungs. Hypoxia stimulated ventilation rate of both the gills and the 

lungs, as did infusion of NaCN into the ventilatory stream or the arterial bloodstream 

(McKenzie and Taylor, 1966). Interestingly, norepinephrine stimulated gill ventilation 

but not lung ventilation rates. The axolotl thus shows similar ventilatory responses to 

larval amphibians. 
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The caecilian IJphloncctcs natans shows an interesting suite of ventilatory responses 

to hypoxia, differing somewhat from other amphibians, in that aquatic hypoxia affects 

neither breathing frequency nor mechanics (Gardner et al., 2000). Yet, aerial hypoxia 

increases ventilation frequency as in other amphibians, 

The salamander Dcsmognathusfuscus responds to hypoxic exposure with an increase 

in buccal pumping, even though as adults they lack lungs (Sheafor et al., 2000), 
similarly to how lunged salamanders would respond, though the role of this buccal 

hyperventilation in the observed maintenance of oxygen uptake in milder hypoxia is 

unknown. 

Ventilatory Responses to Hypercapnia 
Interpretation of hypercapnic responses in amphibians is confounded by the 

considerable capacity for cutaneous CO elimination. With the potential for CO loss
2 2 

across the skin, arterial PC0 values will be lower for a given inspired PC0 than
2 2 

in reptiles, birds or mammals, for example. Short of concurrently measuring blood 

PC0
2 
and acid-base parameters along with ventilation, quantitative determination of 

the sensitivity of the pulmonary hypercapnic response-and certainly any comparison 

with similar exposure in reptiles, for example-is problematic. 

Anuran amphibians typically respond to elevations in aerial CO with increased 
2 

lung ventilation (see reviews by West and Van Vliet, 1992; Reid, 2006) resembling 

terrestrial tetrapod vertebrates (see other chapters, this volume). Most urodeles, 

however, show little or no ventilatory responsive to hypercapnia, and lung ventilation 
frequency is not correlated with arterial PC0 (see West and Van Vliet, 1992). The

2 

predominantly skin-breathing salamander Cryptobranchus allcganicnsis responds to 

aquatic hypercapnia with an increase in pulmonary ventilation (Boutilier and Toews, 

1981), more like anurans. In caecilians, where independent and combined exposure to 

aerial and aquatic hypoxia has been determined, aquatic rather than aerial hypercapnia 

is the more potent ventilatory stimulant (Gardner et al., 2000). 
Similar to the hypoxic ventilatory response in anuran amphibians, there is seasonal 

variation in the extent of the hyperventilation stimulated by hypercapnia, with winter 

bullfrogs (Rana catcsbciana) showing a temperature-independent muting of the 

ventilatory response to 3-5% inspired CO
2 

(Bicego-Nahas and Branco, 1999). 

Chemoreceptors and Intermittent Ventilation 

Amphibians are typically intermittent lung breathers (see Boutilier, 1984; Smarresk, 

1990; Feder and Burggren, 1992; Taylor et al., 1999; Reid and West, 2004). Apneic 

periods (essentially, diving in aquatic species) range from a few seconds to literally 

hours, depending upon species, metabolic rate, and temperature. Understanding the 

dynamics of control of intermittent ventilation in non-endothermic vertebrates has 

vexed researchers for decades (Gottlieb and Jackson, 1976; Burggren and Shelton, 
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1979; Boutilier and Shelton, 1986; West er al., 1989; Milsom, 1991~ Kinkead and 

Milsom, 1996), as they have tried to understand how the lung ventilation is reflexly 

stimulated. Compounding the analysis is the fact that amphibians are bi- or trimodal 

breathers, which provides a whole addirional layer of complexiry of chemoreceptive 

controL 
The simplesr hyporhesis for whar rriggers rhe initiation of air breathing is that 

here exisr regulatory ser-pointts) for "acceptable" blood P0 , PC0 or [H+]. When
2 2 

a rhreshold level is crossed (increased PC0 or decreased P0 or pH), then lung 
2 2 

ventilation is triggered. This "threshold hypothesis" has much appeal, fitting in with 
the steady-state, homeostatic view of ventilatory control in mammals and birds, which 

typically are constant breathers that experience relatively little variation in blood gases 

and acid-base status. Unfortunately, analyses of blood gases and pH during bouts 

of intermittent breathing in amphibians reveal only a moderate correlation between 

a short-term specific threshold (e.g. P0
2 

15 kPa or pH 7.45) and the onset of lung 

ventilation following an apneic period in anuran amphibians (e.g,Coelho and Srnarresk, 
2003; Boutilier and Shelton, 1986). Feedback from intrapulmonary chemoreceptors 

may be more influential in terminating or initiating apneic episodes, but Kinkead and 
Milsom (1996) report an indirect modulatory effect rather than a direct control of the 

intermittent breathing pattern by such receptors. 

One of the confounding factors in understanding how the internal respiratory 

environment influences intermittent breathing in amphibians may lie in the large 

contribution of cutaneous gas exchange to total gas exchange in most amphibians. In 

the adult bullfrog, for example, the skin accounts for approximately 10-25% of total O 
2 

uptake and up to 80% of total CO
2 

elimination (Gottlieb and Jackson, 1976; Burggren 
and West, 1982). Intracardiac admixture of systemic venous blood draining the skin 

with systemic venous blood from non-cutaneous systemic vascular beds will elevate 

arterial P0 and reduce arterial PC0 an effect that may grow as the apneic period 
2 2 

progresses. This diminishes the signal for arterial blood-monitoring chemoreceptors 

(e.g.aortic arch, carotid labyrinth) that would normally occur during interruption of 

pulmonary ventilation in a strictly lung breather. 

Clearly, the additional study of factors-both peripheral and CNS - terminating 

apnea in intermittent breather is highly warranted. 

Development of Chemoreceptive Ventilatory 
Control in Amphibians 

Almost all amphibians begin life with embryonic/larval stages that are almost entirely 

aquatic. Later in their life cycle, they develop from bimodal (skin, gills) into trimodal 

breathers with the addition of pulmonary ventilation. The changing importance of 

respiratory organs during development, evident from gas exchange partitioning studies, 

has been investigated in many anuran species (see Burggren and West; 1982; Burggren 
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Ventilatory Responses to Lung Inflation and Hypoxia 
Most studies on the development of the respiratory regulatory system have focused on 

anuran larvae ("tadpoles"), which have become popular models for probing vertebrate 

respiratory development (Reid and Milsorn, 1998; Gdovin et al., 1999; Straus, 2000; 

Wassersug and Yamashita, 2000; Straus et al., 2001). In early larval stages, anurans 

respond to aquatic hypoxia by increasing buccal pumping frequency, which in turn 

increase irrigation of the internal gills (see Burggren and Just, 1992). This response is 

evident as early as the Taylor-Kollros stage I, even before the appearance ofinternal gills 

(Burggren and Doyle, 1986).As lungs develop, pulmonary gas exchange is also increased 

by hypoxic stimulation. The sensory system involved in the hypoxic stimulation ofgill 

ventilation appears to involve receptors at two locations. The larvae of bullfrogs (Rana 
catesbeiana) as early as stage V through stage XIX show rapid response (from 1.3 to 

3.3 sec depending on stages) to inhalation of hypoxic or hyperoxic water or water 

laced with sodium cyanide (NaCN), a stimulant of 02·sensitive receptors (Jia and 

Burggren, 1997a; Straus et al., 2001). This response is subsequently abolished by the 

removal of the first gill arch (Figure 3,Jia and Burggren, 1997b). Neurophysiological 

recordings have subsequently been made from 02·sensitive neurons on the first gill 

arch of bullfrog tadpoles (Strauss et al., 2001). A second, slower hypoxic response to 

inhalation of hypoxic water (varying from 7.7 to 19 sec) persists after the first gill 

arch has been removed, indicating another population of more centrally located ° 2, 
sensitive receptors in larval anurans (West and Van Vliet, 1992; Jia and Burggren, 

1997b). The specific location and structure of these "non-branchial" receptors has not 

been identified. 

The carotid labyrinth is an important site of chemoreception in adult amphibians, 

as discussed above, but in the anurans Rana catesbeiana and Xenopus laevis, and the 

urodele Ambystoma tiginnum, this structure is not fully developed until the completion 

of metamorphosis (Malvin, 1985, 1989; Kusakabe, 2002). The adrenergic cells of the 

branchial shunt vessels in larval Ambystoma tigrinum may also be the site of arterial 

blood chemoreceptors (Malvin and Dail, 1986). 

In vitrocharacterization of the respiratory neural output from the brain stem ofpre­

metamorphic bullfrog (stages VIII to XVI) shows that neither the gill nor lung fictive 

ventilation frequency is affected by severe hypoxia (Winmill et al.,2005). This indicates 

the absence of central 02'sensitive receptors for stimulating ventilation during late 

larval development and supports the notion of arterial 02 receptors in anuran larvae. 

However, direct evidence indicating the existence of peripheral °2-sensitive receptors 

reflexly affecting both gill and lung ventilation is still lacking. 
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anuran amphibians quickly diminishes as lung ventilation begins and becomes 

noreceptors provide sensory feedback progressively more important to 0z consumption. Eventually hypoxic branchial 
!Usion that also happens to occur, not 

ventilatory responses and branchial ventilation itself then disappears with subsequent 

development, and is replaced by the typical ventilatory responses of the adults (West 

and Burggren, 1982; Burggren and Doyle, 1986). 
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typically decreases following a single air breath in the larvae of Rana catesbeina (Figure 

4). In bullfrog larvae at stage XVII-XIX, artificial inflation of lungs with nitrogen, air 

or oxygen temporarily reduces gill ventilation frequency (West and Burggren, 1983). 
This finding is supported by the study on decerebrate larvae at the same developmental 

stage (Gdovin et al., 1998). Larvae at stage XVI-XIX showed reduced gill ventilation 

frequency following lung inflation by cranial nerve VII recording and electromyogram of 

the buccal levator muscle (Gdovin et al.,1998). After the initial decrease in gill ventilation 

frequency, lung inflation with nitrogen subsequently increased gill ventilation; on the 

other hand, initial oxygen inflation was subsequently followed by a reduction in gill 
ventilation (West and Burggren, 1983). These experiments suggest that input from the 

pulmonary stretch receptor initially causes a reflex reduction in gill ventilation frequency, 

while the longer term changes resulting from nitrogen or oxygen inflation are mediated 

by input from 02-sensitive chemoreceptors in the lungs or pulmonary vessels. These 

spario-temperal interactions of cherno- and mechanoreceptors in larval stages likely 

ensure optimal O 2acquisition from both respiratory media after the pulmonary system 

has developed, but before the gills undergo developmentally associated apoptosis. These 

interactions between cherno- and mechanoreceptors can also help minimize the loss of 

O 2from blood through the gills into surrounding water when environmental aquatic 

hypoxia reverses the P02gradient across the branchial membranes. 

CO Chemoreceptors
2-Sensitive 

The location of central CO2-sensitive chemoreceptors in larval anuran amphibians has 
been demonstrated in vitro. Hypercapnia stimulates fictive gill ventilation in stage X 
to XIX bullfrog larvae. After stage XX, perfusion of the brain stem with hypercapnic 
solution increasingly stimulates fictive lung ventilation (Torgerson er al., 1997). The 
locations of CO receptors are within the ventral medulla: chemical and 

2-sensitive 

protease lesions at specific sites localized these chemoreceptors to be adjacent to the 
origin of cranial nerves V and X (Taylor et al., 2003). There is as yet no evidence 
for the presence of peripheral CO on the internal gills in larval amphibian 

2-receptors 

during early development, in contrast to the presence of these in air-breathing fishes 
(see below). 

In summary, amphibian anuran larvae respond to both hypoxia and hypercapnia by 
increasing gill ventilation frequency in the early stages and then show a developmental 
transition to predominant adjustments in lung ventilation. The location of receptors 
sensing ambient O level is on the first branchial arch in early development, along with 

2 

some other likely sites, such as the aorta or brain stem. The peripheral Oz-sensitive 
chemoreceptors migrate during development from the gill arch(es) to the carotid 
labyrinth following the completion of metamorphosis. CO chemoreceptors

2-sensitive 

are found within ventral medulla. 

The investigation of the development of ventilatory control in amphibians has been 
heavily focused on anuran larvae. While the cardiovascular anatomical and physiological 
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development of urodeles (salamanders) has been characterized (see Malvin, 1985, 

1989), we know relatively little about the extent to which the development ofrespiratory 

regulation in anurans maps onto salamanders and newts. 
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Figure 4:	 A singleair breath results in a reflex inhibition of gillventilation in an unrestrained 
larva (St TK XIX) of the bullfrog, Rana catesbeiana (after West and Burggren, 
1983). 

Chemoreceptive Control in Air-Breathing Fishes 

In addition to internal gills ventilated by a conventional piscine buccalpump, air-breathing 

fishes typically possess various methods for exploiting air-breathing, including non­

pulmonary air-breathing organs (ABOs) or, in the case of the lungfishes, true lungs (see 

above)(Figure 1). Like their gills, the ABOs/lungs of air-breathing fishes have sensory 

innervation, allowing transmission of cherno- and mechanoreceptor information from 

these organs to me CNS, and allowing motor control over ventilation of the gills (and 

perhaps even neuromodulation of the sensors themselves), as we will now consider. 

Chemoreception in Air-Breathing Fishes 

Although a systematic examination ofchemoreceptors in air-breathing fishes is lacking, 

severalstudies ofboth an in vivoand in vitronature reveal their existence in both central 

and peripheral locations. 

Central Chemoreception 
The appearance of central CO/pH chemoreception is ofren linked to terrestriality 

related to air breathing and the associated elevated venous blood PC02, as previously 

mentioned. However, air-breathing fishes also possess central CO/pH chemoreception. 

In in vitro brainstem preparations, fictive air-breathing frequency increased following 

hypercarbia in superfusing solution in the long nose gar, Lepisosteus osseus (Wilson 

et al., 2000; Remmers et al., 2001). In the South American lungfish. Lepidosiren 
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paradoxa, the reduction of pH in the solution perfusing the isolated fourth cerebral 
ventricle increased lung ventilation and breathing frequency (Sanchez et al., 2001). 
These data suggest the presence of central acid-base and CO2receptors in a few species 
of air-breathing fishes. However, there is insufficient evidence and too few species 

examined to conclude that central CO/pH chemoreception evolves concurrent with 
the evolution of air-breathing in fishes. 

Peripheral Chemoreception 
As in water-breathing fishes and larval amphibians, the branchial 02 chemoreceptors 
of air-breathing fishes monitor gas composition near the gills and control the net level 
of ventilarion-s-i.e. ventilation of gills and ABOs (Smatresk, 1990). On the other 

hand, some species, such as lungfish, rely on internal arterial receptors for regulating 
respiratory and cardiovascular behavior in response to hypoxia or hypercapnia (Perry 
et al., 2005). We now consider peripheral chemoreception of air-breathing fishes. 

Cranial nerve denervarion has been a direct method to test peripheral chemoreceptive 
control, despite confounding side effects such as stress, metabolic depression and 
decreased arterial P02 (Graham, 1997; McKenzie et al., 1991). Denervation of 
cranial nerves IX and X had no effect on air-breathing responses to aquatic hypoxic 
conditions in the bowfin, Amia calva. Thus, the 02-sensitive chemoreceptor responsible 

for increasing air-breathing frequency does not appear to reside on the gills of Amia 
calva (Hedrick and Jones, 1999). However, pseudobranch ablation in the same species 

abolished the air-breathing responses to aquatic hypoxia, indicating that the °2-sensitive 
chemoreceptors may be located on the pseudobranch instead of gills (McKenzie et 
al., 1991). Mechanical movement and compression of the gas bladder of Amia calva 
stimulates a ventilatory response, indicating the likely presence of a stretch receptor 

(Hedrick and Jones, 1999). The African lungfish (Protopterus dolloi) is another species 
that relies only on internal 02 chemoreceptor, because only aerial hypoxia induced the 
secretion of catecholamines and cardiorespiratory responses (Perry et al., 2005). The 
long nose gar (Lepisosteus osseus) also possesses internal chemoreceptors for 02' A 
decrease in arterial P02and injection of NaCN into the ventral aorta both stimulated 
air-breathing frequency; however, air-breathing frequency also increased as 02 level in 

air bladder fell, suggesting peripheral ventilatory control mechanism also exists in this 
species (Smatresk et al., 1986). 

In addition to 02-sensitive chernoreceptors, lungfish may also have peripheral 
CO/pH-sensitive receptors. Lung ventilation increased by 20% in hypercarbia (6.5 
KPa in both water and air) when the cerebral ventricular system was superfused with 
normocarbic solution in the South American lungfish, Lepidosiren paradoxa (Amin­
Naves et al., 2007). 

Innervation of the ABOs has also been studied in the Indian catfish, Heieropneustes 
jossilis, the Asian catfish, Pangasius bypophthalmus, and the Nile bichir, Polypterus bichir 
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bichir. Expression of various neuropeptides was' found in the air-breathing organs of 

these species (Mauceri et al., 2005; Zaccone et al., 2007). Neuroendocrine cells and 
their innervation have been located in the lungs of Protopterus aethiopicus, Amia caiva, 
Polypterus delhezi, Polypterus ornatipinnis and Polypterus bichir bichir (Zaccone et al., 
1989, 1995,2007). Immunoreactivity ofseveral neuropeptides was found in these cells. 
The role of these transmitters may be autonomic control ofcirculation and respiration. 
However, the relative importance and significance of these signals to the respiratory 

responses of air-breathing fishes is still enigmatic, and additional studies are needed to 
linkthe morphology, function and innervation of the neuroendocrine cells. 

Ventilatory Responses in Air-Breathlnq Fishes 

Precise regulation of the ventilation of both gills and ABOs has been studied in 
numerous species ofair-breathing fishes (see for example Randall et al.,1981; Graham, 

1997; Brauner et al., 2004). In contrast to ventilatory chemoreception in amphibians, 

where there isconsiderable conformity in regulatory patterns, amongst the air- breathing 

fishes there appear to be three major groupings: aquatic hypoxia driven, aerial hypoxic 

driven, and a hybrid pattern of responses evident in the lungfishes. This information 

is grouped and summarized here according to the diverse ventilatory responses to 

hypoxia or hypercapnia in air and water. 

Ventilation Driven Primarily by Aquatic Hypoxia 
The first group of air-breathing fishes, primarily responsive to aquatic hypoxia, 
comprises both facultative and obligatory air-breathers. As an example, aquatic 

hypoxia below 6.5 KPa stimulates both gill ventilation and air-breathing frequency in 

the South American tarnoata, Hoplosternum littorale (Affonso and Rantin, 2005) and 

thejeju, Hoplerythrinus unitaeniatus (Oliveira et al., 2004). Also in this first category is 

the gourami, Trichogaster trichopterus, an obligate air-breather from South-East Asia 

that has a labyrinth organ contained within a suprabranchial chamber. This species also 

responds to both aquatic and aerial hypoxia (POz -7 KPa) and aquatic hypercapnia 

(PC02-3 KPa) by increasing air-breathing frequency. Hypoxia also increases 02 
uptake by the labyrinth (Burggren, 1979). In the bowfin, Amia calva, air breaths are 

categorizedinto two types. The first includes exhalation followed by inhalation, and it is 

stimulated by both aerial and aquatic hypoxia. The second is characterized by inhalation 

only, which may be used for regulating gas bladder volume and buoyancy (Hedrick 

andJones, 1999). Low aquatic 02 partial pressure is the main stimulant driving these 
respiratory responses, and the branchial chemoreceptor is the predominant sensor 

eliciting these responses. This group of responses for air-breathing fishes resemble 

those observed in water-breathing teleost fishes (see Jonz and Nurse, Chapter 1) and 

larval anuran amphibians (e.g. Burggren and Just, 1992; Straus, 2000). 
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Ventilation Driven Primarily by Aerial Hypoxia 
The second group of air-breathing species includes fishes such as the mudskipper, 

Periophthalmodon schlosseri and the Australian desert gobj, Chlamydogobius eremius. 
Unlike the first group ofair-breathing fishes that respond primarily to aquatic hypoxia, 

the species in this latter group respond only modestly, if at all, to POzchanges in water. 
Rather, they increase gill and ABO ventilation frequency markedly in response to aerial 

hypoxia. The mudskipper, for example, responds to aerial hypoxia by increasing both 

air-breathing frequency and tidal volume of the vascularized buccopharyngeal cavity 
(Aguilar er al., 2000). The desert goby decreases its opercular movements in aerial 

hypoxia as severe as a POzof ~2 KPa. In a (futile) attempt to cope with experimental 

severe aerial hypoxia, this species relies more on the bubbles in buccal cavity for O, 

acquisition, increasing the percentage of total O, consumption via buccal bubbles 
during aerial hypoxic exposure (Thompson and Withers, 2002). 

Ventilation Driven by both Aquatic and Aerial Hypoxia-the Lungfishes 
The last functionally-categorized group of air-breathing fishes is represented by 
the lungfish. The Sarcopterygii are characterized by true lungs resembling those of 
amphibians. They have reduced gills (especially the anterior-most arches) and generally 
share similar ventilatory control mechanism and responses with tetrapod vertebrates. 
Lung ventilation is stimulated by both aerial and arterial hypoxia (below 7 KPa) in the 
South American lungfish, Lepidosiren paradoxa and the African lungfish, Protopterus 
dol/oi (Sanchez et al., 2001; Perry et al., 2005). Aquatic hypoxia has little or no effect 
on pulmonary ventilatory rate of these species. However, the Australian lungfish, 
Neoceratodus forsteri, responds to aquatic hypoxia (3 kPa) with increased branchial 
ventilation and air-breathing frequency (Fritsche et al., 1993). 

The difference in response among lungfish species may be due to the relative 
importance of air breathing. The Australian lungfish is a facultative air breather that 
begins using lung ventilation in aquatic hypoxia. The other two species are obligate 
airbreathers with reduced gill surface area (Johansen, 1970; Graham, 1997; Fritsche 
et al., 1993; Sanchez et al., 2001). The respiratory regulatory system of Neoceratodus 
may rely more on the signals from water, it being more critical as a respiratory 
medium for maintaining normal aerobic metabolism in this more aquatic species. 
However, the existence of branchial 0z-sensitive chemoreceptors in the American and 
African lungfishes cannot be excluded until such time as more direct loss-of-function 
experiments on gills-e.g. denervation of cranial nerves IX and X-are completed. 

The major differences in hypoxic ventilatory responses discussed above likely reflect 
differences in habitat rather than fall into any sort of strict taxonomic pattern. Air­
breathing fishes of the Amazon Basin and many South-East Asian habitats experience 
both hypoxia and hypercapnia on a daily and seasonal basis due to alternating cycles 
ofphotosynthesis, respiration, decay ofvegetation, flooding, etc. In contrast, the desert 
goby and lungfish live in temporary ponds and may be completely out of water during 
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the dry season. The mudskipper resides in mud burrows filled with extremely hypoxic 
water during low tide, where they survive in the environment by solely using aerial gas 
exchange (Aguilar et al., 2000; Sanchez et al., 2001; Thompson and Withers, 2002). 
Heavy utilization of aerial gas exchange may have contributed to the loss of aquatic gas 
sensing in these species. Such adaptation to their habitat makes the chemoreceptive 
control of ventilation in this group more similar to adult anurans, despite the fact that 
no evidence has pointed out the actual location of their 02-sensitive chemoreceptors. 
Also, little work has been done regarding the existence of fish-like (peripheral) or 

amphibian-like (central) CO2chemoreception in these species. 

Conclusions 

General Trends 

Air-breathing fishesand amphibians occupy a fascinating functional transition point in the 

evolution of terrestrial tetrapods from their aquatic fish-like ancestors. Not surprisingly, 

considerable attention has been paid to the chemoreceptors that regulate ventilation, as 

well as the ventilatory responses themselves. Perhaps reflecting the extreme diversity of 
the air-breathing habit in air-breathing fishes and amphibians, there are relatively few 

general lessons that can be derived with certainty from both interpretation of existing 

studiesand planning of future ones. However, a few key principles do emerge: 

1.	 the more aquatic in nature the animal, the greater is the tendency to have 

sophisticated receptors for, and to respond primarily to, changes in 02 levels in 
the interior milieu; 

2.	 as a transition to air-breathing and terrestrial life develops, the greater is the 

likelihood of having CO2- / pH-sensitive receptors that participate in regulation 

of ventilation; 

3.	 central chemosensitivity is a highly conserved trait, evident in all semi­

amphibious and amphibious animals.: 
4.	 despite the difference in exact location of 02-sensitive receptors, 02 

chemoreception remains peripherally located while CO2chemoreception turns 

centrally during evolution. 

Unanswered Questions/Future Experiments 

When our understanding of a subject like chemoreception in amphibious vertebrates 

isso incomplete, not surprisingly several areas ripe for future experimentation emerge, 

including: 

1.	 the role of daily and seasonal influences on chemoreception and ventilatory 

control, particularly in those animals that live in environments with large 

changes in temperature, pH, CO2and 02 levels; 
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2.	 the specific location and morphological!neurophysiological characterization 

of chemoreceptors-both central and peripheral-in air-breathing fishes and 

amphibians; 

3.	 explanation of the lack of hypercapnic ventilatory responses in animals whose 

isolated brainstems prove to be exquisitely sensitive to CO and pH;
2 

4.	 the role, if any, of efferent innervation of chemoreceptors, and the associated 

extent of neuromodulation that might occur; 

5.	 better understanding of the developmental changes in chemoreception, brought 

into an explicit "evo-devo" context; 

6.	 the interaction of cherno- and mechano-receprors in the regulation of both 

aquatic and aerial gas exchange; 

7.	 the effect of chronic hypoxia and hypercarbia (hypercapnia) on ventilatory 

behavior in bimodal breathers, especially during development when 

physiological plasticiry may be at its greatest. 

8.	 whether in animals heavily exploiting the cutaneous gas exchange the general 

body surface has respiratory chemo-receptors involved in facilitating behaviors 

or processes. 

Since a strong interest exists in the evolution of chemoreception, as reflected in the 

many chapters considering this subject in the present volume, a final perspective is 

that investigators be encouraged to take a truly comparative, multi-species, systematic 

approach. Currently, we are rypically faced with attempting to fit into a patchy mosaic of 

emerging information the results of an in vivo study of branchial denervarion here, and 

an in vitro investigation of brainstern responses there, most likely carried out on distantly 

related species. The most rapid progress will come when, instead, a systematically robust 

and taxonomically relevant suite of species is concurrently investigated by the same 

investigators under the same experimental conditions with the same techniques. The 

rewards of such an approach, though demanding, will be manifold. 
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Notes 

1. It could be argued that "diffusion" and "convection" are indeed also "modes"of gas exchange, 
but here we shall confine the use of mode to structure rather than process. 
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